Доклад на XVII Международную конференцию «Забабахинские научные чтения» 19-23 мая 2025г

РАСЧЁТНАЯ ОЦЕНКА ПРОЧНОСТИ ШПИЛЬКИ РАЗРЫВНОЙ ВЗРЫВНОГО ПОСАДОЧНОГО УСТРОЙСТВА ВПУ-82

А.Г. Нескин, В.В. Доценко, М.В. Никульшин, О.Ю. Жабунина, Ю.Ю. Лушина, О.А. Бычков, А.Н. Малоярославцев

 $\Phi \Gamma {\rm У} \Pi$ «РФЯЦ-ВНИИТ
Ф им. академ. Е. И. Забабахина», Снежинск, Россия

Введение

В настоящее время ведётся разработка взрывного посадочного устройства ВПУ-82 для пакера гидравлического разбуриваемого. Пакер предназначен для обсадной трубы проведении скважине перекрытия при В различных технологических операций, таких как обработка пласта различными составами под давлением, и поинтервального испытания пластов в обсаженных нефтяных и газовых скважинах. Посадочное устройство обеспечивает установку пакера в необходимом месте для перекрытия обсадной трубы скважины в требуемом интервале. Общий вид сборки устройства ВПУ-82 с пакером представлен на рисунке 1, а.

б) состояние после срабатывания устройства ВПУ-82
Рисунок 1 – Сборка устройства ВПУ-82 с пакером

Основными преимуществами предлагаемого устройства ВПУ-82 являются:

– малый габаритный диаметр Ø82 мм, что позволит выполнять работу в горизонтальных скважинах с условным диаметром Ø90÷114 мм;

– применение ВПУ-82 заменяет импортные технологии многостадийного гидроразрыва пласта (МГРП) и Plug&Perf, которые обеспечивают одновременный спуск сборки из нескольких чередующихся посадочных устройств с пакером и перфоратором на кабеле или на гибкой насосно-компрессорной трубе (ГНКТ) и селективную работу посадочного устройства и перфоратора;

– наличие системы отсоединения – сборки шпильки с цангой, принцип работы которой заключается в следующем: при взрыве в камере сгорания посадочного устройства распространяющееся давление действует на пакер, вызывает его срабатывание и разрыв шпильки, в результате чего пакер отделяется от устройства ВПУ-82 и остаётся в обсадной трубе, как показано на рисунке 1, б;

– использование пакера шлипсового с лучшими конкурентными характеристиками из всех предложенных на рынке:

а) рабочее давление – 1000 атм без цементной пробки (без которой не обходится ни одно конкурирующее устройство, что, в свою очередь, увеличивает

финансовые затраты на выполнение работ и само время выполнения работ, поскольку разбуривание цементной пробки увеличивает простой скважины на 1-2 суток);

б) время разбуривания – не более 4 часов.

В процессе конструирования устройства ВПУ-82 проводятся экспериментальные и расчётные исследования прочности его сборочных единиц. По результатам предварительных испытаний макетного образца ВПУ-82 было получено, что входящая в состав устройства шпилька при возникающей в ходе взрыва растягивающей нагрузке обладает недостаточной прочностью в области контакта с цангой, где произошло её разрушение. Специальная ослабленная область (проточка шпильки), в которой должен происходить разрыв, осталась неповрежденной. Схема первоначальной конструкции сборки шпильки с цангой приведена на рисунке 2.

Рисунок 2 – Схема первоначальной конструкции сборки шпильки с цангой

Шпилька с цангой представляют собой стержни переменного сечения. Один конец шпильки имеет коническую форму и соединяется с цангой, а другой – резьбовой, соединяется с пакером. В шпильке предусмотрена зона проектного разрушения посредством выполненной проточки. Цанга на одном конце имеет десять продольных разрезов-пазов. Образованные таким образом «лапки» цанги способны раздвигаться и «захватывать» шпильку так, как показано на рисунке 2. Другой конец цанги – резьбовой, соединяется с поршнем устройства ВПУ-82. Для предотвращения раскрытия «лапок» цанги после захвата шпильки на наружную поверхность цанги над областью контакта со шпилькой устанавливается кольцо стопорное. Материалы для изготовления шпильки, цанги и кольца стопорного с указанием физико-механических характеристик приведены в таблице 1.

Таблица 1 – Физи	ико-механические	е характер	истики м	иатериалов	сборки	шпиль	ьки с
цангой							
Леталь	Материал	$\rho \Gamma/MM^3$	F M Π a	σ MΠa	σ. ΜΓ	Ia S	%

Деталь	Материал	ρ, γ/mm ³	<i>Е</i> , МПа	$σ_m$, ΜΠα	$\sigma_{\scriptscriptstyle \theta},\mathrm{M}\Pi$ a	δ , %
Шпилька	Сплав Д16 [1]	0.0027	$7\cdot 10^4$	274	421	10
Цанга, кольцо стопорное	Сталь 40Х [2]	0.0078	$2 \cdot 10^{5}$	785	980	10

Результаты предварительной экспериментальной отработки показали необходимость внесения изменений в конструкцию. Для реализации прогнозируемого разрыва шпильки в зоне проточки проведены расчётные исследования прочности, в которых рассмотрен ряд вариантов корректировки конструкции:

– уменьшение диаметра шпильки в области проточки;

– введение между шпилькой и цангой конического кольца для равномерного распределения нагрузки на шпильку от «лапок» цанги;

– увеличение контактной площади путём увеличения диаметров шпильки и цанги в области их соединения;

– замена материала шпильки на материал с более высокими механическими характеристиками.

В ходе численного моделирования состояния сборки шпильки с цангой в условиях действия растягивающего усилия определяется усилие разрыва шпильки. Необходимое усилие разрыва шпильки, оценённое по импульсу давления в камере сгорания и при котором происходит срабатывание пакера, должно составлять $F_p = (1.7 \div 2) \cdot 10^5$ H.

Расчёты выполнены в сравнительной статической постановке.

1 Состояние сборки первоначальной конструкции шпильки с цангой в условиях действия растягивающей силы

Для валидации расчётной модели сборки шпильки с цангой при действии растягивающей силы предварительно рассматривается первоначальная конструкция шпильки с диаметром области проточки $d_n = 23.7$ мм. Расчётная модель представлена на рисунке 3.

Рисунок 3 – Расчётная модель первоначальной конструкции сборки шпильки с цангой (половина конструкции)

Исследуется фрагмент цанги с «лапками», удалённая от зоны контакта со шпилькой часть цанги не моделировалась, поскольку данная область не оказывает существенного влияния на концентрацию напряжений и деформаций в шпильке. По этой же причине кольцо стопорное смоделировано упрощённо без отверстий с учётом габаритных размеров в зоне контакта с цангой.

Для имитации соединения шпильки с деталями пакера на торце резьбового конца шпильки заданы ограничения перемещений по всем степеням свободы. В качестве нагрузки к торцу цанги приложена линейно нарастающая сила *F* в отрицательном направлении оси *X*.

Усилие разрыва шпильки F_p определяется исчерпанием несущей способности шпильки, которая оценивается по точке пересечения «двух касательных» к графику силовой характеристики – зависимости действующей растягивающей нагрузки от перемещения свободного края шпильки F(U). Зона разрушения шпильки определяется по локализации максимальных пластических деформаций, превышающих относительное удлинение δ материала.

График силовой характеристики F(U), полученный по результатам расчёта, приведён на рисунке 4.

Рисунок 4 – График зависимости F(U) для первоначальной конструкции

По представленному графику определено, что исчерпание несущей способности шпильки ожидается при величине $F_p = 1.43 \cdot 10^5 \text{ H} = 14.3 \text{ тс.}$ Достижение пластическими деформациями относительного удлинения материала шпильки – сплава Д16 ($\delta = 10$ %), первостепенно наблюдается на конической поверхности в области контакта с цангой (рисунок 5).

В цанге деформации сосредоточены в области перехода цилиндрических частей «лапок» в конические (рисунок 6) и составляют до 4.7 %, что меньше относительного удлинения стали 40X ($\delta = 10$ %). То есть в цанге в указанных областях возможно образование поверхностных зон пластичности.

Рисунок 5 – Распределение пластических деформаций в первоначальной конструкции шпильки в момент её разрыва

Рисунок 6 – Распределение пластических деформаций в цанге в момент разрыва шпильки

Таким образом, по результатам расчёта в первоначальной конструкции сборки разрушение шпильки ожидается при усилии $F_p = 1.43 \cdot 10^5$ Н по конической поверхности в зоне контакта с цангой, что соответствует фактической зоне разрушения в ходе эксперимента. На рисунке 7 представлен вид шпильки перед испытанием и с бороздами среза после испытания.

б) после испытания
Рисунок 7 – Вид шпильки при проведении испытания

2 Оценка влияния диаметра проточки на состояние шпильки

Рассматривается состояние сборки шпильки с уменьшенным диаметром её проточки и цанги в условиях действия растягивающей нагрузки. Расчётная модель сборки аналогична представленной на рисунке 3.

Полученные в результате расчётов и анализа силовых характеристик шпильки усилия F_p , характеризующие потерю несущей способности и последующий разрыв шпильки, в зависимости от диаметра области проточки d_n приведены в таблице 2.

	F_p , H			
d_n , мм	Коническая поверхность в			
	области контакта с цангой	Область проточки		
23.7				
(первоначальная	$1.43 \cdot 10^{5}$	_		
величина)				
22.6	$1.39 \cdot 10^{5}$			
21.5	_	$1.31 \cdot 10^{5}$		
20.4	_	$1.2 \cdot 10^{5}$		

Таблица 2 – Значения усилий, соответствующих потере несущей способности шпильки, в зависимости от диаметра области проточки

В ходе выполненных расчётов получено, что при диаметре области проточки $d_n > 22.6$ мм разрушение шпильки происходит по конической поверхности в области контакта с цангой (как представлено на рисунке 5). При $d_n = 22.6$ мм разрыв шпильки возможен как в зоне контакта с цангой, так и в области проточки, поскольку происходит одновременное достижение относительного удлинения материала шпильки – сплава Д16 ($\delta = 10$ %), в указанных сечениях (рисунок 8). В случае $d_n < 22.6$ мм разрыв ожидается в области проточки (рисунок 9). При этом расчётное усилие потери несущей способности $F_p < 1.39 \cdot 10^5$ H, что не соответствует требованию по усилию разрыва шпильки $F_p = (1.7 \div 2) \cdot 10^5$ H.

Рисунок 8 – Распределение пластических деформаций в шпильке с диаметром *d_n* = 22.6 мм в момент её разрыва

Рисунок 9 – Распределение пластических деформаций в шпильке с диаметром *d_n* = 21.5 мм в момент её разрыва

Таким образом, уменьшение диаметра проточки способствует смещению зоны разрушения шпильки в область проточки. Но требование по значению усилия разрыва шпильки не выполняется.

Введение конического кольца между шпилькой и цангой, а также незначительное увеличение диаметров шпильки и цанги (на 2.3 %) в области их соединения с одновременным уменьшением диаметра области проточки не привело к заметному изменению результатов по сравнению с полученными выше. Расчётное усилие потери несущей способности при прогнозируемом разрушении шпильки в области проточки составило $F_p < 1.38 \cdot 10^5$ H, что также не соответствует требованию по усилию разрыва шпильки.

3 Оценка влияния замены материала шпильки на её состояние

В качестве замены материала шпильки на более прочный материал рассматривалась сталь 40Х, её механические характеристики приведены в таблице 1. Предварительно оценивалась величина необходимого диаметра проточки шпильки для обеспечения разрыва в данной области по формуле [3]:

$$d_n = \sqrt{\frac{4 \cdot F_p}{\pi \cdot \sigma_{\beta}}}.$$
 (1)

После подстановки требуемого усилия разрыва $F_p = (1.7 \div 2) \cdot 10^5$ Н в выражение (1) получено, что диаметр области проточки должен составлять $d_n = 14.9 \div 16.1$ мм.

В расчёте рассматривается шпилька с диаметром проточки *d_n* = 15.3 мм. Расчётная модель аналогична представленной на рисунке 3.

По полученному в результате расчёта графику силовой характеристики (рисунок 10) определено, что потеря несущей способности шпильки ожидается при усилии $F_p = 1.74 \cdot 10^5$ H = 17.4 тс.

Рисунок 10 – График зависимости F(U) для шпильки из стали 40Х

Нагруженной зоной шпильки является область проточки (рисунок 11), где по всему сечению достигается относительное удлинение материала шпильки $\delta = 10$ %. То есть разрушение шпильки из стали 40Х гарантируется в области проточки.

Рисунок 11 – Распределение пластических деформаций в шпильке из стали 40Х в момент её разрыва

В цанге максимальное значение деформации реализуется, как и в первоначальной конструкции, в области перехода цилиндрических частей «лапок» в конические и составляет $\varepsilon_{max} = 8.1$ %, что меньше относительного удлинения материала ($\delta = 10$ %). То есть в цанге ожидается образование поверхностных зон пластичности в указанной области. В случае увеличения диаметра проточки и повышения несущей способности шпильки возможна реализация разрушения цанги.

Таким образом, в шпильке из стали 40X потеря несущей способности ожидается в области проточки при усилии $F_p = 1.74 \cdot 10^5$ H, что удовлетворяет требованию по значению усилия разрыва шпильки ($F_p = (1.7 \div 2) \cdot 10^5$ H).

4 Испытания модернизированной конструкции

Проведённые испытания устройства ВПУ-82 с установленной шпилькой из стали 40X с диаметром проточки $d_n = 15.3$ мм подтвердили расчётные результаты. На рисунке 12 представлено устройство ВПУ-82 с имитатором пакера перед взрывным испытанием и во время разрыва шпильки, а на рисунке 13 приведен вид шпильки при испытании.

б) момент разрыва шпильки Рисунок 12 – Испытание устройства ВПУ-82 с имитатором пакера

б) после разрыва Рисунок 13 – Вид шпильки из стали 40Х при проведении испытания

Заключение

В данной работе выполнены оптимизационные расчётные исследования сборки шпильки с цангой, входящей в состав взрывного посадочного устройства ВПУ-82 для пакера гидравлического разбуриваемого. Проведены численные исследования состояния первоначальной конструкции сборки и сборки с внесёнными доработками в конструкцию шпильки в условиях растягивающего усилия.

По результатам выполненных расчётов сборки шпильки с цангой получено:

– при использовании шпильки из сплава Д16 с диаметром проточки $d_n < 22.6$ мм разрыв шпильки происходит в области проточки, но усилие потери несущей способности составляет $F_p < 1.39 \cdot 10^5$ H, что ниже требуемого усилия разрыва $F_p = (1.7 \div 2) \cdot 10^5$ H. При диаметре проточки $d_n \ge 22.6$ мм разрушение шпильки происходит в области контакта с цангой;

– применение конического кольца между шпилькой и цангой и незначительное увеличение диаметров шпильки и цанги (на 2.3 %) в области их соединения не приводит к возрастанию несущей способности шпильки;

– при замене материала шпильки на более прочный материал, например, на сталь 40Х, и снижении диаметра проточки до $d_n = 15.3$ мм разрыв шпильки обеспечивается в области проточки при требуемом усилии разрыва.

Следовательно, одновременное выполнение требований по разрыву шпильки в области проточки и по значению усилия разрыва достигается при замене материала шпильки на сталь 40X и уменьшении диаметра проточки до $d_n = 15.3$ мм. Проведённые взрывные испытания устройства ВПУ-82 с установленной шпилькой из стали 40X подтвердили расчётные результаты.

Список использованных источников

1 ГОСТ 4784-2019. Алюминий и сплавы алюминиевые деформируемые. Марки.

2 ГОСТ 5453-2016. Металлопродукция из конструкционной легированной стали. Технические условия.

3 Расчет на прочность деталей машин: Справочник/ И.А. Биргер, Б.Ф. Шорр, Г.Б. Иосилевич – 4-е изд., перераб. и доп. – М.: Машиностроение, 1993 г.